
Expert System Strategies Using Datalog Program Analysis
CS252r Final Report

Abstract
Expert systems are computer systems designed to solve do-
main problems in the manner that a domain expert would.
These expert systems may query users for facts to help prove
the goal, and such systems employ various strategies to de-
termine the order of questions to ask users. Unfortunately,
some naive strategies ask unnecessary or irrelevant questions
to users, which negatively impacts users’ experiences and
reduces the usefulness of these systems. Other systems rely
on metarules to inform their question-asking strategies, but
these metarules are troublesome to encode and subject to hu-
man opinion and error.

This paper describes a domain independent method of au-
tomatically generating strategies using program analysis on
the encoding of the logic rules. Through the use of heuristics,
this method can be used to more easily determine a question-
asking strategy that minimizes user-cost.

An implementation of the methods contained here gives
preliminary, but encouraging results, for the feasibility and
practicality of deriving control flow strategy in this manner.

1. Introduction
An expert system is typically divided into two components,
a database of facts known about the world and a domain
specific knowledge base. This domain specific knowledge
base can be encoded as sets of logical rules. These rules
generally take the form:

IF α1 ∧ α2 ∧ . . . ∧ αn THEN σ

where each α represents a logical statement relevant to the
problem domain and σ represents the logical statement that
is true if α1 through αn are true. Such assertions are natu-
rally amenable to being represented in logic programming
languages such as Prolog or Datalog.

For instance, the following rule is in this form: IF the stu-
dent has taken CS51 ∧ the student has taken CS152 THEN
the student can take CS153. A fact in the database of facts
about the world might take the form: Student X has taken
CS51.

An expert system then deduces conclusions, via its infer-
ence engine, based on its database and the knowledge base.
In a backward chaining expert system, the inference engine

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2015 held by Owner/Author. Publication Rights Licensed to ACM.

Copyright c© 2015 ACM [to be supplied]. . . $15.00

starts with a logical goal to prove, then uses the inference
engine to derive the necessary conditions that would lead
to that goal. Finally, it checks to see whether those condi-
tions are true to determine whether the goal can be reached.
This is opposed to a forward chaining expert system, which
starts with the facts and applies rules until it can derive a con-
clusion. In backward chaining expert systems, if the system
does not have a necessary fact in order to derive the conclu-
sion, it may query a user in order to receive new information.

In systems with a large set of rules and many unknown
facts about the world, there is the difficulty of determining
what order to ask the user for facts about the world. In some
inference engines, such as Prolog based expert systems, the
strategy, or ordering of questions, is determined by the en-
coding of the rules themselves. In such systems, if the en-
coding of the rules is not done with care, the system may
ask many irrelevant questions to the user which increases
the cost of using the system. In order to find the best strategy
of asking questions, one might consider every possible order
of asking questions and the possible answers that could be
given. By finding the cost of each strategy, one could find the
best possible strategy. Unfortunately, the number of strate-
gies grows factorially making such a search strategy infeasi-
ble.

In this paper, we present a set of heuristics based on pro-
gram analysis of Datalog that can be used to inform expert
system strategies. These heuristics can be used to inform the
naive search of possible strategies by reducing the number
that need to be searched or they can be used to generate a
strategy without conducting the naive search. These heuris-
tics can be automatically computed through program anal-
ysis on the domain knowledge. In this paper, we explicitly
consider expert system whose knowledge bases are written,
nonrecursively, in the logic programming language Datalog.
Datalog was chosen because it is sufficiently expressive for
the basic tasks at hand, while still being easy to analyze.

1.1 Motivating Example
This research was motivated in part by the DataTags project
(dat), which aims to help researchers share data by aiding in
the navigation of the complex laws that govern the sensitive
data sharing. As part of the workflow, researchers sharing
data sets are asked a series of questions about their data. For
instance, “Do the data contain health or medical informa-
tion?” Based on the answers, the data will be tagged appro-
priately and the researcher will be given information about
the guidelines governing the sharing of their data set, e.g.
storage, transit, and access requirements.

Currently, the DataTags questionnaire is encoded in a
domain specific language that combines domain knowledge
(knowledge about the laws governing sensitive data) with

control flow logic (knowledge about the order to ask the
questions). This representation of the questionnaire makes
the questionnaire more difficult to maintain as laws change
and the questionnaire grows in size and scope. In addition,
as a very stateful system, it is very difficult to understand in
the first place.

Separating the domain specific knowledge from the con-
trol flow logic allows each to be modified cleanly and inde-
pendently. As such, project stakeholders wanted to explore
the encoding of just the domain logic as a Datalog program.
But this then necessitates the independent production of that
control flow logic. Thus, this a clear example of how the re-
search question at hand may be applied to scenarios in which
the domain knowledge is clear but the appropriate control
flow is not.

1.2 Organization and Contributions
The remainder of this paper is organized as follows. Section
2 formalizes the aforementioned problem statement. Section
3 describes a possible approach to the problem (envisioning
it as a game tree) as well as some naive searching techniques.
Section 4 introduces the PredicateDAG and the heuristics we
developed with the use of that tree. Section 5 examines the
preliminary results of these heuristics, both in their perfor-
mance relative to ground-truth, and their ability to speed up
the tree search. And finally, Sections 6 and 7 present related
and future work, and conclude.

Our contributions are the following:

1. A game-theoretic approach to the separation of control
flow and domain logic for surveys such as this one and
related system.

2. To our knowledge, the first attempt to derive this control
flow logic automatically from domain logic encoded in
Datalog.

3. The identification of several useful heuristics based on
Datalog program analysis.

2. Problem
We begin with a clean description of the problem, then
discuss some simplifying assumptions that we made here.
These become relevant later in Section 5: Preliminary Re-
sults.

2.1 Definitions
Let us define the following:

1. Question: the questions that the program may ask. We
also need a mapping from these questions to a set of
Datalog predicates (possible responses).

2. Trace = Question∗ to represent the questions that have
already been asked at any given point.

3. Database: Datalog programs (both unit clauses and pred-
icates). The database of Datalog rules should always in-
clude rules for a special predicate decided, the deriva-
tion of which indicates our survey is complete. For the
purposes of heuristics that follow, we restrict ourselves
to non-recursive Datalog programs, in which predicates
all have arity less than or equal to one.

4. A function Cost : Trace → R. We require that this
function be monotonic. In particular, if t1, t2 ∈ Trace
and t1 = t2q1q2 . . . then Cost(t1) > Cost(t2). We may
also consider more specific cases of the cost function
later.

5. A set W of all possible states of the world. We think
of the world as holding all the answers to our questions.
We also defineW , a distribution on possible states of the
world. We will draw a particular world state, w, from this
distribution.

6. A function Ask : W × Question → Database that
represents asking the user for information and returning
some Datalog predicates.

7. A function Strat : Database×Trace→ Question. This
is what we are seeking to solve for. Given a database
representing the facts we know and the inference rules
we have, and a trace of the questions we’ve asked so far,
what question should we ask next?

8. A function Interact :

Interact(W, db, strat)
tr = []
while db does not imply decided do:

q = strat(db, tr)
tr = tr + q
db = db + ask(W, q)

od
return tr

Given these definitions, what we desire is the strategy
such that minimizes EW [Cost(Interact(W,db, strat))].
Basically, we would like a strategy that minimizes the ex-
pected cost of concluding decided given what we know
about the world.

2.2 Assumptions
Unfortunately, we were unable to be fully general with re-
spect to the distribution of world states or cost functions in
this initial exploration of the problem. Instead we assume
while computing trace costs that the cost is just the num-
ber of questions asked. Furthermore, we assumed that there
were only two answers to each possible question, yes and
no, each with probability 0.5 irrespective of the question or
previously asked questions.

In some senses, these are quite restrictive assumptions.
Indeed they omit much of the problem’s complexity. But,
they still allow for an interesting exploration of the problem,
as we shall see. Addressing some of these assumptions fig-
ures prominently in Section 7: Futher Work.

3. Naive Solutions: Searching
In this section, we conceptualize the problem as a game tree
of sorts, and explore search-based solutions to our problem.

3.1 Game Tree
We can conceptualize this problem as a game between two
players: the survey-asker and the survey-taker, who alternate
turns. Let us denote nodes in the tree where the survey-asker

is about to choose a question as SurveyNodes, and points
where the taker is about to return an answer as WorldNodes.
The game ends when the asker is able to conclude decided
given the information provided by the taker up until that
point. The survey asker then incurs the cost of the trace up
until that point.

3.2 Naive Search
From this GameTree, a naive search comes quite naturally.
At each SurveyNode, we consider all possible actions of
the asker, that is, we consider asking all questions that have
not yet been asked. And at every WorldNode, we consider
all possible responses of the survey taker. At the leaves
of tree, costs are calculated according to the cost function.
Costs propagate up the tree quite naturally. The cost of a
WorldNode is the weighted average of its children’s costs
(weighted by the probability of each answer). The cost of a
SurveyNode is the minimum of its children’s costs, with the
question that produced that node being the best question at
this SurveyNode. The computation of this total GameTree
then gives the desired completed strategy, as it produces the
cost-minimizing question at every possible point.

Unfortunately, this search has incredibly terrible time
complexity. In the worst case, it must consider all n! per-
mutations of questions, and for each permutation, the 2n

possible sets of answers to those questions, and thus is at
least O(2nn!) (assuming constant time for the Datalog en-
gine).

3.3 Alpha-Beta Search
Alpha-Beta Pruning or Alpha-Beta Search is a variant on the
minimax search algorithm that is commonly used on game
trees to determine the best next move. At a high level, Alpha-
Beta pruning searches the tree one move at a time. If it de-
termines that a move (for either party) is worse than a pre-
viously examined move, it stops evaluating the remaining
possibilities that could result of taking that move, effectively
pruning part of the game tree. If the moves are searched in
the optimal order, the effective branch factor of the tree is re-
duced to its square root, speeding up the search significantly
(Knuth and Moore 1975).

There are several caveats when applying Alpha-Beta
pruning to the problem at hand. Most importantly, Alpha-
Beta assumes that the two players are antagonistic. That is,
one player is trying to minimize their own cost, while the
other player is trying to minimize it. Bringing it back to the
survey example, this would be like the survey asker always
returning back the least helpful answer to us (hoping to pro-
long the survey and their time with the survey asker). This is
slightly different from the problem as conceptualized above,
which assumes that the survey taker is non-deterministically
choosing a possible question response from some distribu-
tion. We include this section here for two reasons. First, we
believe that Alpha-Beta search can be modified in a way
that still increases efficiency without making this bad-world
assumption. And second, even this related problem that as-
sumes a antagonistic world is an interesting one to consider.

Within the framework necessitated by Alpha-Beta search,
there are some further caveats. Because Alpha-Beta pruning

does not evaluate the entire game tree, in order to determine
the next best possible move, it may necessary to perform
the algorithm each time the state of the world is changed
(if the world returns back an answer that we have no yet
searched). Furthermore, because Alpha-Beta pruning still
grows factorially with respect to the number of questions,
it may be impossible to fully compute Alpha-Beta within a
reasonable amount of time. As a result, it may be necessary
to develop a heuristic to evaluate each game state, regardless
of whether decided can be derived at that game state. This
is an approach commonly taken in game engines for Chess,
for example. This problem is not addressed in this paper.
Finally, Alpha-Beta pruning can be just as slow as the Naive
Search if the ordering of the moves searched is suboptimal.
This leaves room for some sort of strategy being used to
determine the order of questions to be searched using Alpha-
Beta pruning.

4. Heuristics
Given the computational difficulty of deriving the optimal
solution using the aforementioned naive search approach,
we explore here several heuristics that may ameliorate the
problem. First, they can be used to speed up the naive search
to something that is more computationally tractable. And
second, these heuristics may be used to write a question-
asking program that hopefully does a reasonably good job of
approximating the optimal strategy. We could even imagine
doing this dynamically, computing the best next question to
ask in response to user input as the user takes the survey. This
is feasible as these heuristics are generally computationally
lightweight, especially when compared to the previous naive
searching.

In this section, we first define the PredicateDAG, and then
describe the heuristics that operate over this graph as well as
their usefulness for our purposes.

4.1 Predicate DAG
What we refer to here as the PredicateDAG is a variation
of “And-Or Trees.” (Davis 2002). In this particular vari-
ation, we are using it to represent the Datalog programs
we are concerned with. The PredicateDAG is made of two
types of nodes, OrNodes and AndNodes, which strictly al-
ternate (there are no edges between OrNodes or between
AndNodes). An OrNode represents a predicate in the Dat-
alog program, for example decided. As its name implies, it
is true if any of its children (AndNodes) are true. AndNodes
represent bodies of Datalog rules. Again, as their name im-
plies, they are true only if all their descendents (OrNodes)
are true. Note that OrNodes can have multiple parents, if
that predicate is used in a variety of rules, but AndNodes
have only one parent, as they each correspond to exactly one
rule in this implementation. “Leaves” (nodes with no chil-
dren) in the PredicateDAG correspond to those predicates
which are the result of asking questions. Our restriction to
non-recursive Datalog programs ensures that this graph is
acyclic, though note that it is not a tree. For example, mul-
tiple AndNode children of an OrNode may refer to another
OrNode, as seen in Figure 1.

d e c i d e d (X) :− Q1 (X) , Q2 (X) , A(X) .
d e c i d e d (X) :− not Q1 (X) , Q3 (X) , B(X) .
d e c i d e d (X) :− Q3 (X) , B(X) , Q4 (X) .

A(X) :− Q5 (X) .
A(X) :− not Q5 (X) , Q6 (X) .

B(X) :− Q6 (X) .
B(X) :− not Q7 (X) , Q8 (X) .

Figure 1. A Datalog program and a graphical representa-
tion of the PredicateDAG representing the program. OrN-
odes are represented by the rounded squares. AndNodes are
represented by the circles

The dynamic updating of the PredicateDAG is quite
straightforward. When we receive a piece of information
from the world, we need to make one OrNode true, and one
false. For the OrNode marked true, we examine their parents
and remove this child. If that leaves them with no children,
then the AndNode’s parent is then recursively marked true.
For the OrNode marked true, we examine each AndNode
which is now false. If the parent of that AndNode has only
this one child, then it is recursively marked false.

These updates are made according to a topological sorting
of the graph, so as to not require multiple operations at any
given node.

4.2 Must Ask Questions
This first heuristic is perhaps the most basic. A question must
be asked if, given the current set of facts, all possible ways
of concluding decided include the answer (whether positive
or negative) to a specific question. The computation of this
set is quite straightforward. We compute this MustAsk set
for every node in the DAG. At the leaves (OrNodes denoting
question answers), the set is of course just the singleton set
corresponding to that question. From the leaves, this infor-
mation is then propagated upward (in topological order). The
MustAsk sets of AndNodes and OrNodes are then computed
by taking the union and intersection of their children’s sets,
respectively. The MustAsk sets of the root decided OrNode
represent our desired set.

4.3 Dependency
The dependency heuristic can be defined in a way similar to
the MustAsk heuristic. Question A is dependent on Question
B if, for every possible trace that concludes decided while
using Question A, Question B is also used. Because there
is no trace concluding decided that only involves Question
A, this suggests that when considering possible traces in
our GameTree, we should only consider traces that order
Question B before Question A. This will reduce the number
of traces that we must search over.

This heuristic can be computed by an upwards propagat-
ing algorithm that starts at the leaves of the PredicateDAG.
Every node calculates a mapping from questions to sets of
not dependent questions. At the end, the mapping from ques-
tions to not dependent questions can be flipped to determine
dependent questions.

Starting from the leaves, which are OrNodes that repre-
sent single questions, each leaf maps every question that is
not itself to the singleton set containing its own question.
This represents that, at this leaf, no other questions are de-
pendent on this question. This information is propagated up
the DAG, as explained below.

Each AndNode creates a new mapping by iterating through
each of its children. For each question, the AndNode will de-
termine whether any of its children map that question to the
empty set. This means that one of its children has a trace
that is dependent on that question. If so, the AndNode will
map that question to the empty set, representing that it is
dependent on that question. Otherwise, if none of the chil-
dren map the question to the empty set, the AndNode maps
the question to the union of the sets its children have that
question mapped to. At any OrNode that is not a leaf, the
OrNode will simply map each question to the union of the
sets of questions that its children have that question mapped
to.

Once all of this information is propagated to the root
node, we now know, for every question, the set of questions
that are not dependent on it. Thus, in order to find the set
of questions that are dependent on a question, we can take
the set difference of the set of all questions and the set of
questions that are not dependent with that particular ques-
tion, producing our desired result.

Because the dependency status of two questions may
change as more facts about the world are known and the
PredicateDAG is updated according, the dependency heuris-
tic can be easily recalculated upon receiving new facts.

4.4 Codependency
The codependency heuristic is a specialized case of the de-
pendency heuristic. Question A and Question B are code-
pendent if Question A is dependent on Question B and Ques-
tion B is dependent on Question A. This information gives
us more specificity than the dependency heuristic. The code-
pendency calculation relies on the same not dependent infor-
mation calculated by the dependency heuristic. After calcu-
lating the not dependent information, one can simply check
to see if two questions are codependent by seeing if they
each dependent on the other.

4.5 Counting
Absent the ability to use one of the above heuristics, this
is perhaps the simplest thing to do. The leaf nodes, unsur-
prisingly, consist of one mention of the question that cor-
responds to the OrNode’s predicate. Moving up the DAG,
we just sum at every level the mentions of questions at the
children. At the root decided node, the best question to ask
is then just the one with the most mentions in the program.
This is meant to be an approximation of value, the idea that a
question whose answers show up often in the DAG is likely
higher value, and should be asked sooner rather than later.

4.6 Overall Heuristic Strategy
Our overall heuristic-based strategy then does the following:

1. If a previous iteration indicated that some questions must
be asked next, ask one of those.

2. Otherwise, if there is at least one question that must be
asked, arbitrarily choose one of them to ask.

3. Otherwise, consider the question with the highest count.
If this question is dependent on some other questions,
Ask one of those questions, and remember any other
depended-on questions as to be asked next. If this ques-
tion is codependent with any other questions, ask it, and
remember its codependent questions as to be asked next.
Otherwise, just simply ask this question.

4.7 Search Optimization
These heuristics can also be used to optimize our search
space by cutting down the number of children added to
SurveyNodes. We make the following optimizations:

1. If a previous asked questions indicated that some ques-
tions must be asked next, only search asking that ques-
tion.

2. Otherwise, if there is at least one question that must be
asked, only search asking one such question.

3. Otherwise, search asking all possible questions with the
following modifications. If two or more questions are
codependent, only ask one of them now, and remember
the others in the set as to-be-asked-next. If a question is
dependent on another question, do not explore asking it
now.

These serve to significantly shrink the branching factor of
the GameTree, by greatly decreasing the number of possible
next questions as some SurveyNodes. This is effectively cuts
down the permutation factor of n! in the aforementioned
runtime.

5. Preliminary Results
The above heuristics and game search were implemented in
Java, so as to make use of the Datalog engine written by
Aaron Bembenek (Bembenek 2015). The assumptions that
we have made regarding cost functions and probability dis-
tributions (mentioned in Section 2.2) render a comprehen-
sive and principled evaluation difficult. In addition, with the
multitude of possible surveys, it’s challenging to enumerate

a principled representative sample. As such, the below re-
sults should be considered less of a comprehensive evalua-
tion, but instead as a proof-of-concept validation.

We were able to run the full brute-force search as well
as our heuristic over several small-size surveys that we at-
tempted to make diverse in structure:

1. For highly determined surveys (e.g. when there is always
exactly one MustAsk question), the heuristic and opti-
mized search both perform admirably, returning the ex-
pected ordering of questions in an efficient manner.

2. In general, the heuristic-based strategy performs quite
well on our examples. For some of these highly deter-
mined ones, it attained identical expected cost, and in
the worse example, performing 19% worse (in expected
cost). These surveys roughly correspond to certain en-
codings of flowcharts.

3. The heuristics can be quite effective in cutting down
the number of nodes that need to be explored in the
game tree search. For example, on one survey it cut the
number of such nodes from 35 to 4, and in another,
the optimized search was able to return after search-
ing 2300 nodes while the non-optimized version exceed
Java’s heap memory.

While certainly not comprehensive, these results indicate
that these heuristics can be effective in practice.

6. Related Work
In traditional expert systems, concerns about the ordering of
questions have generally been left to the expert system de-
signer and domain expert. For instance, some systems, such
as ones encoded in Prolog, might perform the following: (a)
all (relevant) rules are tried and (b) all rules whose left-hand
sides match the case (and whose right-hand sides are rele-
vant to problem solving goals) have their right-hand sides
acted upon. But under different circumstances, other strate-
gies would be more appropriate (Merritt 1989).

For instance, the early expert system MYCIN, relied
on metarules to help the inference engine determine which
question to ask next. Metarules are rules of the same IF/THEN
form as the knowledge base rules, but instead of reasoning
about the expert domain, they reason about the knowledge
base rules themselves.

These metarules are explicit encodings of strategy knowl-
edge. The explicit encoding of knowledge was recognized
as an important design consideration for expert systems.
However, the creation and use of MYCIN and other sub-
sequent expert systems demonstrated that it was extremely
difficult to get the necessary knowledge in order to create ex-
pert systems and other knowledge-based computing systems
(Bushanan and Shortlife 1984). This problem, known as the
knowledge acquisition bottleneck or knowledge-engineering
bottleneck, has been examined from a variety of angles
(Gaines 1987). As a result of this bottleneck, it is difficult
and time consuming to program expert systems with correct
and helpful metarules.

Thus, some focus has been turned towards dynamically
creating metarules instead of having the domain expert and

engineer explicitly encode them. For instance, neural net-
works have been used to reduce the number of rules that
are fired in order to reduce the number of questions asked
(Bogacz and Giraud-Carrier 1998). Others have taken a
probability-based approach, relying on Bayesian reasoning
to determine possible best questions (Carenini et al. 1995).
Unfortunately, these approaches (like our naive search) can
quickly become intractable, and often discard important in-
formation regarding the rules themselves.

To our knowledge, our work is the first example of this
reasoning regarding question-asking that is done through
program analysis of the rules, specifically in this case an
analysis of Datalog.

7. Future Work
While this report represents a good first start with interest-
ing preliminary results, it has also led to many interesting
questions that we hope to explore further.

First comes our assumptions with respect to the probabil-
ity distribution and cost function. As mentioned previously,
some of our heuristics cease to be sound when the cost func-
tion is no longer merely the number of questions asked. It
might be interesting to explore other cost functions that are
more expressive, but perhaps with still sufficient structure
to drive efficient searching. For example, one can imagine
a modularly structured cost function, in which the permuta-
tion of certain sets of questions relative to one another mat-
ters, but where the sets can be arbitrarily interleaved with
equivalent cost. In addition, the current analysis neglects any
consideration of probability distributions.

Next, we would like to explore possible further heuris-
tics. In a world where our cost functions are more general,
for example, asking codependent questions in different or-
ders may produce different costs, and we might like to deter-
mine an optimal ordering. In addition, our current heuristics
do not consider probability in anyway. Armed with knowl-
edge of this distribution, or even an approximation of it, we
should be able to derive additional heuristics that take this
information into account.

Also, as we mentioned previously, it would be interest-
ing to consider using these and other similar heuristics in an
Alpha-Beta-esque search, both for evaluating “game states”
as well as determining the order in which to search node
descendants (which greatly affects the algorithm’s perfor-
mance).

Finally, we would like to consider extensions to the Dat-
alog language itself. First, we would like to explore possi-
ble annotations to these Datalog programs, that might ex-
press, for example, dependency, or other relationships be-
tween questions. While not required, the ability to include
these annotations might give the survey writer greater con-
trol in determining the used heuristics and the efficiency of
the GameTree search. In addition, we would like to consider
theoretical extensions of the Datalog that would allow for
full encoding of the upper-bound and lower-bound relation-
ships we encountered when examining the DataTags survey.
Basically, can we cleanly expression assertions such as “po-
tential data harm is no worse than level X?” We believe that

the use of Datalog hypotheticals (Bonner 1988) may be one
avenue toward achieving this expressivity.

8. Conclusion
This paper advances a number of techniques for determining
an optimal control-flow when given piece of domain logic
encoded in Datalog. These include a naive search of the
game tree, as well as several heuristics that can be used as a
strategy in themselves, or in tandem with the naive search as
an optimization. Though results are still quite preliminary,
they are promising, and show that such approaches based
on program analysis of Datalog may in fact be practically
useful.

Acknowledgments
We are first indebted to Professor Stephen Chong for his
guidance and supervision of this work over the last year.
And also to Aaron Bembenek for his help and support with
respect to his Datalog engine. And finally to Michael Bar-
Sinai, who provided a helpful introduction to the DataTags
project.

References
Datatags. URL http://datatags.org/.
A. Bembenek. Datalog engine final report, 2015.
R. Bogacz and C. Giraud-Carrier. Learning meta-rules of selection

in expert systems. Technical report, Bristol, UK, UK, 1998.
A. J. Bonner. Hypothetical datalog: Complexity and expressiblity.

In M. Gyssens, J. Paredaens, and D. V. Gucht, editors, ICDT’88,
2nd International Conference on Database Theory, Bruges, Bel-
gium, August 31 - September 2, 1988, Proceedings, volume 326
of Lecture Notes in Computer Science, pages 144–160. Springer,
1988. ISBN 3-540-50171-1.

B. G. Bushanan and E. H. Shortlife. Rule Based Expert Sys-
tems: The Mycin Experiments of the Stanford Heuristic Pro-
gramming Project. Addison-Wesley Longman Publishing Co.,
Inc., Boston, Massachusetts, 1984.

G. Carenini, S. Monti, and G. Banks. An information-
based bayesian approach to history taking. In Pro-
ceedings of the 5th Conference on Artificial Intelli-
gence in Medicine in Europe: Artificial Intelligence
Medicine, AIME ’95, pages 129–138, London, UK, UK,
1995. Springer-Verlag. ISBN 3-540-60025-6. URL
http://dl.acm.org/citation.cfm?id=648153.751268.

E. Davis. Constrained and/or trees, 2002.
B. R. Gaines. An overview of knowledge-acquisition and transfer.

International Journal of Man-Machine Studies, 26(4):453–472,
1987. doi: 10.1016/S0020-7373(87)80081-0.

D. Knuth and R. W. Moore. An analysis of alpha-beta pruning.
Aritificial Intelligence, 6(4):293–326, 1975. doi: 10.1016/0004-
3702(75)90019-3.

D. Merritt. Building Expert Systems in Prolog. Amzi! inc.,
Lebanon, Ohio, 1989.

